LS 9Avril Sfax

Devoir de contrôle n°2 (4M)

M^r Masmoudi etM^rDriss

Exercice

Dans le plan orienté P, on considère un triangle ABC équilatéral de sens direct.

On pose: B' = $S_{(AC)}(B)$; I = C * B; J = C * B'; K = A * I; L = A * J et $\omega = J * I$

On désigne par : r la rotation de centre A et d'angle $\frac{\pi}{3}$ et $f = r \circ S_{(BC)}$

- 1) a) Déterminer f(B) et f(C). Caractériser f
 - b) Déterminer f(I).En déduire la nature du triangle AIJ
- 2) Soit r' la rotation de centre J et d'angle $-\frac{\pi}{3}$ et $g = S_{(AB')}$ o r'
 - a) Montrer que $r' = S_{(JK)} \circ S_{(JI)}$. En déduire que $g = t \xrightarrow{IA} \circ S_{(JI)}$
 - b) En décomposant convenablement t_{IA} caractériser g
 - c) Démontrer que fog est une translation dont on déterminera son vecteur
- 3) On pose $h = S_{(BC)}$ or o $S_{(BC)} = S_{(BC)}$ of et $\Omega = S_{(BC)}(A)$

Montrer que $h = R_{(I; -\frac{\pi}{3})} \circ t_{IJ}^{-}$. Caractériser h

<u>Problème</u>

- A)1) Soit φ la fonction définie sur IR * par $\varphi(x) = x + 1 + \text{Log}x$
- a) Etudier les variations de ϕ . Montrer que l'équation : $\phi(x) = 0$ admet ,dans IR $_+^*$, une solution unique β , vérifier que : 0,27 < β < 0,28. Donner le signe de ϕ
 - b) Tracer la courbe représentative (C) de φ dans un plan rapporté à un repère ON (O, i; j)
- 2) Soit f la fonction définie sur IR₊ par : $f(x) = \frac{x \text{Log } x}{x+1}$ si x > 0 et f(0) = 0
 - a) Etudier la continuité et la dérivabilité de f à droite en zéro
 - b) Etudier les variations de f . Montrer que $f(\beta) = -\beta$
 - c) Déterminer la limite de f en $+\infty$, puis la limite de Logx f(x) lorsque x tend vers $+\infty$ Interpréter graphiquement le résultat obtenu
 - d) Préciser les positions relatives des courbes représentatives γ et Γ respectivement des fonctions Log et f.

Tracer γ et Γ dans un plan rapporté à un repère ON (O', \overrightarrow{u} ; \overrightarrow{v}) (unité graphique 4 cm)

- B) 1) Montrer que; \forall $n \in IN^*$, l'équation: f(x) = n, admet dans IR_+ une solution unique α_n .
 - 2) a) Etablir que $f(e^n) \le n$. En déduire que $\alpha_n \ge e^n$.
 - b) Montrer que $Log\left(\frac{\alpha_n}{e^n}\right) = \frac{n}{\alpha_n}$. (1)
 - c) Montrer que ; $\forall n \in IN^*$ on a : $0 \le Log\left(\frac{\alpha_n}{e^n}\right) \le \frac{n}{e^n}$. En déduire la limite de $Log\left(\frac{\alpha_n}{e^n}\right)$

puis celle de $\frac{\alpha_n}{e^n}$. $\;\;$ lorsque n tend vers $+ \, \infty$

- 3) On pose : $\alpha_n = e^n \cdot (1 + x_n)$ avec $x_n \ge 0$
 - a) A l'aide de (1) exprimer $.(1 + x_n)$ Log $.(1 + x_n)$ en fonction de n
 - b) Etablir que : $\forall t \in IR_+ \text{ on a : } 0 \le (1+t) \text{Log}(1+t) t \le \frac{t^2}{2}$

- c) Déduire de a) et b)que ; \forall $n \in IN*$ on a : $x_n \le ne^{-n} \le x_n + \frac{x_n^2}{2}$ Puis que : $0 \le ne^{-n} - x_n \le \frac{n^2}{2} e^{-2n}$ et $0 \le n - x_n e^n \le \frac{n^2}{2} e^{-n}$
- d) Déterminer la limite de $\,e^n+n$ $\alpha_n\,\,$ lorsque n tend vers + ∞

.